Biotechnology
Although not normally thought of as biotechnology, agriculture clearly fits the broad definition of "using a biological system to make products" such that the cultivation of plants may be viewed as the earliest biotechnological enterprise. Agriculture has been theorized to have become the dominant way of producing food since the Neolithic Revolution. The processes and methods of agriculture have been refined by other mechanical and biological sciences since its inception. Through early biotechnology, farmers were able to select the best suited and highest-yield crops to produce enough food to support a growing population. Other uses of biotechnology were required as crops and fields became increasingly large and difficult to maintain. Specific organisms and organism by-products were used to fertilize, restore nitrogen, and control pests. Throughout the use of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants—one of the first forms of biotechnology. Cultures such as those in Mesopotamia, Egypt, and India developed the process of brewing beer. It is still done by the same basic method of using malted grains (containing enzymes) to convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process the carbohydrates in the grains were broken down into alcohols such as ethanol. Ancient Indians also used the juices of the plant Ephedra vulgaris and used to call it Soma. Later other cultures produced the process of Lactic acid fermentation which allowed the fermentation and preservation of other forms of food. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Manish keswani’s work in 1857, it is still the first use of biotechnology to convert a food source into another form.
Combinations of plants and other organisms were used as medications in many early civilizations. Since as early as 200 BC, people began to use disabled or minute amounts of infectious agents to immunize themselves against infections. These and similar processes have been refined in modern medicine and have led to many developments such as antibiotics, vaccines, and other methods of fighting sickness.[citation needed]
In the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. In 1917, Chaim Weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum, to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.
The field of modern biotechnology is thought to have largely begun on June 16, 1980, when the United States Supreme Court ruled that a genetically-modified microorganism could be patented in the case of Diamond v. Chakrabarty.[3] Indian-born Ananda Chakrabarty, working for General Electric, had developed a bacterium (derived from the Pseudomonas genus) capable of breaking down crude oil, which he proposed to use in treating oil spills.
Revenue in the industry is expected to grow by 12.9% in 2008. Another factor influencing the biotechnology sector's success is improved intellectual property rights legislation—and enforcement—worldwide, as well as strengthened demand for medical and pharmaceutical products to cope with an ageing, and ailing, U.S. population.
Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeans—the main inputs into biofuels—by developing genetically-modified seeds which are resistant to pests and drought. By boosting farm productivity, biotechnology plays a crucial role in ensuring that biofuel production targets are met.
Applications
Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non food (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses.
For example, one application of biotechnology is the directed use of organisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and also to produce biological weapons.
A series of derived terms have been coined to identify several branches of biotechnology, for example:
- Bioinformatics is an interdisciplinary field which addresses biological problems using computational techniques, and makes the rapid organization and analysis of biological data possible. The field may also be referred to as computational biology, and can be defined as, "conceptualizing biology in terms of molecules and then applying informatics techniques to understand and organize the information associated with these molecules, on a large scale." Bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector.
- Blue biotechnology is a term that has been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare.
- Green biotechnology is biotechnology applied to agricultural processes. An example would be the selection and domestication of plants via micropropagation. Another example is the designing of transgenic plants to grow under specific environments in the presence (or absence) of chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. An example of this would be Bt corn. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate.
- Red biotechnology is applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures through genetic manipulation.
- White biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous/polluting chemicals. White biotechnology tends to consume less in resources than traditional processes used to produce industrial goods.[citation needed] The investments and economic output of all of these types of applied biotechnologies form what has been described as the bioeconomy.
Medicine
In medicine, modern biotechnology finds promising applications in such areas as
- drug production;
- pharmacogenomics;
- gene therapy; and
- genetic testing;
Pharmacogenomics
Pharmacogenomics is the study of how the genetic inheritance of an individual affects his/her body’s response to drugs. It is a coined word derived from the words “pharmacology” and “genomics”. It is hence the study of the relationship between pharmaceuticals and genetics. The vision of pharmacogenomics is to be able to design and produce drugs that are adapted to each person’s genetic makeup.
Pharmacogenomics results in the following benefits:
- Development of tailor-made medicines. Using pharmacogenomics, pharmaceutical companies can create drugs based on the proteins, enzymes and RNA molecules that are associated with specific genes and diseases. These tailor-made drugs promise not only to maximize therapeutic effects but also to decrease damage to nearby healthy cells.
- More accurate methods of determining appropriate drug dosages. Knowing a patient’s genetics will enable doctors to determine how well his/ her body can process and metabolize a medicine. This will maximize the value of the medicine and decrease the likelihood of overdose.
- Improvements in the drug discovery and approval process. The discovery of potential therapies will be made easier using genome targets. Genes have been associated with numerous diseases and disorders. With modern biotechnology, these genes can be used as targets for the development of effective new therapies, which could significantly shorten the drug discovery process.
- Better vaccines. Safer vaccines can be designed and produced by organisms transformed by means of genetic engineering. These vaccines will elicit the immune response without the attendant risks of infection. They will be inexpensive, stable, easy to store, and capable of being engineered to carry several strains of pathogen at once.
Pharmaceutical products
Most traditional pharmaceutical drugs are relatively simple molecules that have been found primarily through trial and error to treat the symptoms of a disease or illness.[citation needed] Biopharmaceuticals are large biological molecules known as proteins and these usually target the underlying mechanisms and pathways of a malady (but not always, as is the case with using insulin to treat type 1 diabetes mellitus, as that treatment merely addresses the symptoms of the disease, not the underlying cause which is autoimmunity); it is a relatively young industry. They can deal with targets in humans that may not be accessible with traditional medicines. A patient typically is dosed with a small molecule via a tablet while a large molecule is typically injected.
Small molecules are manufactured by chemistry but larger molecules are created by living cells such as those found in the human body: for example, bacteria cells, yeast cells, animal or plant cells.
Modern biotechnology is often associated with the use of genetically altered microorganisms such as E. coli or yeast for the production of substances like synthetic insulin or antibiotics. It can also refer to transgenic animals or transgenic plants, such as Bt corn. Genetically altered mammalian cells, such as Chinese Hamster Ovary (CHO) cells, are also used to manufacture certain pharmaceuticals. Another promising new biotechnology application is the development of plant-made pharmaceuticals.
Biotechnology is also commonly associated with landmark breakthroughs in new medical therapies to treat hepatitis B, hepatitis C, cancers, arthritis, haemophilia, bone fractures, multiple sclerosis, and cardiovascular disorders. The biotechnology industry has also been instrumental in developing molecular diagnostic devices that can be used to define the target patient population for a given biopharmaceutical. Herceptin, for example, was the first drug approved for use with a matching diagnostic test and is used to treat breast cancer in women whose cancer cells express the protein HER2.
Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle and/or pigs). The resulting genetically engineered bacterium enabled the production of vast quantities of synthetic human insulin at relatively low cost. According to a 2003 study undertaken by the International Diabetes Federation (IDF) on the access to and availability of insulin in its member countries, synthetic 'human' insulin is considerably more expensive in most countries where both synthetic 'human' and animal insulin are commercially available: e.g. within European countries the average price of synthetic 'human' insulin was twice as high as the price of pork insulin. Yet in its position statement, the IDF writes that "there is no overwhelming evidence to prefer one species of insulin over another" and "[modern, highly-purified] animal insulins remain a perfectly acceptable alternative.
Modern biotechnology has evolved, making it possible to produce more easily and relatively cheaply human growth hormone, clotting factors for hemophiliacs, fertility drugs, erythropoietin and other drugs. Most drugs today are based on about 500 molecular targets. Genomic knowledge of the genes involved in diseases, disease pathways, and drug-response sites are expected to lead to the discovery of thousands more new targets.
No comments:
Post a Comment
hi... hiren...